Automatic Bayesian Density Analysis
نویسندگان
چکیده
منابع مشابه
Automatic Bayesian Curve Fitting
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...
متن کاملAutomatic Bayesian curve ®tting
A method of estimating a variety of curves by a sequence of piecewise polynomials is proposed, motivated by a Bayesian model and an appropriate summary of the resulting posterior distribution. A joint distribution is set up over both the number and the position of the knots de®ning the piecewise polynomials. Throughout we use reversible jump Markov chain Monte Carlo methods to compute the poste...
متن کاملFast Bayesian Factor Analysis via Automatic Rotations to Sparsity
Rotational transformations have traditionally played a key role in enhancing the interpretability of factor analysis via post-hoc modifications of the factor model orientation. Regularization methods also serve to achieve this goal by prioritizing sparse loading matrices. In this work, we cross-fertilize these two paradigms within a unifying Bayesian framework. Our approach deploys intermediate...
متن کاملAutomatic Bayesian inference for LISA data analysis strategies
We demonstrate the use of automatic Bayesian inference for the analysis of LISA data sets. In particular we describe a new automatic Reversible Jump Markov Chain Monte Carlo method to evaluate the posterior probability density functions of the a priori unknown number of parameters that describe the gravitational wave signals present in the data. We apply the algorithm to a simulated LISA data s...
متن کاملBayesian Density Regression
This article considers Bayesian methods for density regression, allowing a random probability distribution to change flexibly with multiple predictors. The conditional response distribution is expressed as a nonparametric mixture of regression models, with the mixture distribution changing with predictors. A class of weighted mixture of Dirichlet process (WMDP) priors is proposed for the uncoun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2019
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v33i01.33015207